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Abstract

We evaluate the economic forces that contribute to Google’s large market share in web search. We
develop a model of search demand in which consumer choices are influenced by switching costs, quality
beliefs, and inattention, and estimate it using data from a field experiment with US desktop internet
users. We find that (i) requiring Google users to make an active choice among search engines does not
change market shares, implying that switching costs play a limited role; (ii) Google users who are paid
to try Bing for two weeks update positively about its relative quality, with a significant share preferring
to continue using it; (iii) switching defaults increases Bing market share by more than correcting quality
beliefs, consistent with persistent inattention. Correcting beliefs and removing choice frictions would
increase Bing’s market share by 18.2 percentage points and increase consumer surplus by $11.9 per
consumer-year. Policies that affect defaults are more effective than those requiring active choice. In the
final part of the paper, we use Microsoft search logs to assess the impact of additional data on search
result relevance. The results suggest that sharing Google’s click-and-query data with Microsoft may
have a limited effect on market shares.
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